This version of the product documentation has been archived and is no longer updated.
Tekla Tedds
2020
Tekla TeddsTekla Tedds for Word
Dimensional analysis
Dimensional analysis allows you to verify that your calculations are dimensionally correct. The following paragraphs explain how to switch on dimensional analysis, and detail the dimensions of variables that can be used with mathematical operators or functions.
Switch on dimensional analysis (the Tedds Application)
On the Home tab, click Options.
The Options - Default dialog appears.
In the side pane, click Calculating.
Select the Perform dimensional checks option.
Switch on dimensional analysis (Tedds for Word)
In the Tedds ribbon group, click More > Tedds Options.
The Options - Default dialog appears.
In the side pane, click Calculating.
Select the Perform dimensional checks option.
Operators
Tip:
For Tedds for Word users:
You can access most of the operators in the Library Access System. Go to Writing your own custom calculations > Calculation writing documentation > Math symbols.
Dimensional analysis operators
Function
Input dimensions
Result dimensions
Example
x + y = z
x - y = z
x and y must have identical dimensions
z has the same dimensions as x and y
(1m) + (1m) = 2m
x × y = z
x ÷ y = z
x and y may have any dimensions
Dimensions of z result from those of x and y being multiplied and divided according to × or ÷ function
(1m) * (1m) = 1m2
(((...)))
Any
No change to dimensions
None
yx = Z
10x
x has to be dimensionless, y may have any dimension
z's dimension exponent is y's dimension altered by exponent x
(1m)5 = 1m5
Functions
Tip:
For Tedds for Word users:
You can access most of the operators in the Library Access System. Go to Writing your own custom calculations > Calculation writing documentation > Maths functions.
General dimensional analysis functions
Function
Input dimensions
Result dimensions
Example
sqrt(x) = z
x may have any dimension
z's dimension exponent is x's halved
sqrt((1 m)) = 1 m0.5
abs(x) = z
int(x) = z
int(x,"unit") = z
round(x,y) = z
round(x,y,"units") = z
mod(x, y) = z
quotient(x,y) = z
x may have any dimension, y has to be dimensionless
z has the same dimension as x
abs((-1 m)) = 1 m
sum(x,y,z,…) = z max(x,y,z,…) = z min(x,y,z,…) = z average(x,y,z,…) = z median(x,y,z,…) = z
All items being considered in the list (x,y,…) must have identical dimensions
z has the same dimensions as x and y
sum((1 m),(1 m)) = 2 m
rand() = z
None
z is dimensionless
None
Logarithmic and exponential dimensional analysis functions
Function
Input dimensions
Result dimensions
Example
ln(x) = z
log(x) = z
exp(x) = z
x has to be dimensionless
z is dimensionless
None
Trigonometric dimensional analysis functions
Function
Input dimensions
Result dimensions
Example
degrees(x,y,z) = a
x, y and z have to be dimensionless.
x can be in degrees or radians because those units are dimensionless.
a is dimensionless, but may be in degrees or radians since they are dimensionless
degrees((1,30,0) = 1.5 °
sin(x) = z
cos(x) = z
tan(x) = z
cosec(x) = z
sec(x) = z
cot(x) = z
x has to be dimensionless because degrees and radians are dimensionless
z is dimensionless
sin (90 °) = 1
asin(x) = z acos(x) = z atan(x) = z
x has to be dimensionless
z is dimensionless - but may be in degrees or radians since they are dimensionless
asin (1) = 90 °
Hyperbolic dimensional analysis functions
Function
Input dimensions
Result dimensions
Example
sinh(x) = z
cosh(x) = z
tanh(x) = z
asinh(x) = z
acosh(x) = z
atanh(x) = z
x has to be dimensionless
z is dimensionless
None
Logical dimensional analysis functions
Function
Input dimensions
Result dimensions
Example
if(condition,x,y) and(x,y,z,...)
(x && y) or (x,y,z,...)
(x || y)
x > y
x >= y, x ≥ y
x == y
x <> y, x ≠ y
x <= y, x ≤ y
x < y
All logical comparisons must be between values with identical dimensions
No change to dimensions, true and false are dimensionless